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Abstract. Past studies of uncertainty handling with polyhedral clouds have
already shown strength in dealing with higher dimensional uncertainties in
robust optimization, even in case of partial ignorance of statistical informa-
tion. However, in thousands or more dimensions current implementations
would still be computationally too expensive to be useful in real-life applica-
tions.

In this paper we propose a simulation based approach for optimization over
a polyhedron, inspired by the Cauchy deviates method. Thus we achieve a
computationally efficient method to use polyhedral clouds also in very high
dimensions.
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1 Introduction

Uncertainty modeling is an everyday task in human real-life: when one esti-
mates the time to get to the workplace, when one tries to assess whether the
fuel of the car suffices for that trip etc. Sometimes it can be a very difficult
task, and so finding a good mathematical description for uncertainty model-
ing can also comprise severe difficulties. Some of the most critical issues are
lack of statistical information and the well-known curse of dimensionality,
see, e.g., [11].

In lower dimensions, lack of information can be handled reliably with several
tools, e.g., p-boxes [1, 4], Dempster-Shafer structures [19], however, in higher
dimensions (say, greater than 10) there exist only very few. Often simula-
tion techniques are used, but they may fail to be reliable in many cases, see,
e.g., [5]. The clouds formalism [17], being a mixture of interval and fuzzy
set methods, is one possibility to deal with both incomplete and higher di-
mensional information in a reliable and computationally tractable fashion.
Still, in thousands or more dimensions current implementations would be
computationally too expensive to be useful in real-life applications.

In this paper we present a method that first uses the clouds approach to
determine a polyhedral representation of the uncertainties, that means, the
set in which we search for worst-case scenarios with respect to the given
uncertainties is a polyhedron. Methods to generate this polyhedron already
exist, cf. [10]. In the second step, to actually find the worst-case scenario,
we need to solve an optimization problem subject to polyhedral constraints.
For very high-dimensional problems we propose a solution approach that
is computationally very attractive and can be easily parallelized, inspired
by the simulation based Cauchy deviates method for interval uncertainty
[14, 13, 12].

The new approach will be applied in the context of robust optimization. The
worst-case analysis is embedded in an optimization problem formulation as
additional constraints, cf. [9]. Typical difficulties imposed by these problems
are, e.g., nonlinear, or black box objective functions, or mixed integer vari-
ables. As test cases we use two applications from space system design, cf.
[8, 18].
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This paper is organized as follows. We introduce the concept of polyhedral
clouds in Section 2. The connection to robust optimization is illustrated in
Section 3. The core part of the paper can be found in Section 4 presenting
in detail the worst-case analysis for the robust optimization. In Section 5
we perform numerical experiments in two test cases from real-life spacecraft
design.

2 Polyhedral clouds

Let ε be an n-dimensional random vector. A potential cloud is an interval-
valued mapping x → [α(V (x)), α(V (x))], with the potential function V :
R

n → R bounded below, and α, α : V (Rn) → [0, 1] are functions constructed
to be a lower and upper bound, respectively, for the cumulative distribution
function (CDF) F of V (ε), α continuous from the left and monotone, α
continuous from the right and monotone.

We define the so-called lower α-cut Cα := {x ∈ R
n | V (x) ≤ V α} if

V α := min{Vα ∈ R | α(Vα) = α} exists, and Cα := ∅ otherwise; analogously
we define the upper α-cut Cα := {x ∈ R

n | V (x) ≤ V α} if V α := max{Vα ∈
R | α(Vα) = α} exists, and Cα := R

n otherwise. This gives a nested collection
of lower and upper confidence regions in the sense that Pr(ε ∈ Cα) ≤ α,
Pr(ε ∈ Cα) ≥ α, and Cα ⊆ Cα.

Note that lower and upper α-cuts Cα, Cα are level sets of the potential func-
tion V . By selecting V reasonably one gets an uncertainty representation
of high-dimensional, and possibly incomplete or unformalized knowledge,
cf. [10]. Formalized knowledge can be given, e.g., as marginal CDFs, inter-
val bounds on single variables, or real sample data. Moreover, in real-life
situations there is typically a significant amount of unformalized knowledge
available based on expert experience, e.g., knowledge about the dependence
of variables without any precise statistical correlation information.

In [10] we learn that a natural way of uncertainty elicitation given incomplete
information leads to a polyhedral shaped cloud. This can be illustrated
by the following example: First, we generate a data set from an N(0, Σ)
distribution with some 2×2 covariance matrix Σ 6= Id2, where Idn is the n×n
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identity matrix, and assume that this data belongs to 2 random variables
with a physical meaning. Then an expert is given the data without any
information about the actual probability distribution of the random variables.
The fundamental idea is that, based on his knowledge about the physical
relationship between the variables, the expert is still able to provide vague,
unformalized information about the dependence of the variables, modeled by
polyhedral constraints on the variables, cf. Figure 2.1. The potential function
V is constructed with respect to these constraints and can be updated by
adding new constraints. Thus the lower and upper α-cuts Cα, Cα become
polyhedra. The polyhedra reasonably approximate confidence regions of the
hidden normal distribution linearly, as shown in Figure 2.1, although the
information given to the expert was merely vague and unformalized.

The confidence regions constructed by the polyhedral clouds based on the
available uncertainty information will later become part of the search space
for robust optimization, the so-called worst-case relevant regions, cf. Sec-
tion 3. Searching for worst-case scenarios within these regions is the main
scope of this paper.

There exist several relationships between clouds and other well-known un-
certainty representations, cf. [7].

A p-box is a rigorous enclosure of the CDF F of a univariate random variable
X, Fl ≤ F ≤ Fu, in case of partial ignorance about specifications of F , cf. [1,
4]. The relation to potential clouds becomes evident, regarding V (ε) as a 1-
dimensional random variable and the functions α, α as a p-box for V (ε). Thus
potential clouds extend the p-box concept to the case of multidimensional ε,
without the exponential growth of work in the conventional p-box approach.
Furthermore, p-boxes can be approximated discretely by Dempster-Shafer

structures (DS structures), cf. [6]. In an analogous way one can generate a
DS structure that approximates a given potential cloud.

To see an interpretation of potential clouds in terms of fuzzy sets one con-
siders Cα, Cα as α-cuts of a multidimensional interval valued membership
function defined by α and α. The major difference to clouds is the fact that
clouds allow for probabilistic statements, i.e., one cannot go back and con-
struct a cloud from a multidimensional interval valued membership function
because of the lack of the probabilistic properties mentioned at the begin-
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Figure 2.1: Approximation of a confidence region by 95% lower and upper
α-cuts. The polyhedral cloud results in confidence regions that reasonably
approximate confidence regions of the true N(0, Σ) distribution although
the information was given unformalized. In more than 2 dimensions the
polyhedral constraints are provided for projections to 1-dimensional or 2-
dimensional subspaces.

ning of the section. If the interval valued membership function actually does
have these probabilistic properties, it corresponds to consistent possibility
and necessity measures [15] which are related to interval probabilities [20].

3 Robust optimization

Assume that we wish to find the optimum θ ∈ T minimizing the objective
function value g(θ, ε) under uncertainty of the n-dimensional random vector
ε ∈ C, with T = T 1 × · · · × T n0, T i = {1, 2, . . . , Ni} either a finite subset of
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N or T i = [θi, θi] an interval in R, and C a polyhedral α-cut from a cloud,
i.e., typically

C = {x | A(x − m) ≤ b} ⊆ b0 = [b0, b0], (3.1)

with A, m, b, [b0, b0] known from the generation of the cloud, A ∈ R
n×n,

m, b ∈ R
n, [b0, b0] an n-dimensional box.

This problem class appears for example in robust design optimization where
θ is a design point, g typically comes as a black box that computes, e.g.,
the cost of the design, and the uncertainty representation ε ∈ C is a safety
constraint to account for the robustness of the design, cf. [9].

Since we seek to minimize g robustly, the worst-case for g is given by its
maximum value over the uncertainties. Hence the optimization problem to
be solved reads as follows

min
θ

max
ε

g(θ, ε) (3.2)

s.t. θ ∈ T,

ε ∈ C.

The main difficulties arising from (3.2) are imposed by the bilevel structure
in the objective function, by the mixed integer formulation (since T i can be
either a discrete set or an interval), and by the fact that g may comprise
strong nonlinearities, or discontinuities, or may be given as a black box.

In the remainder of the paper we particularly aim at applications in real-life
situations. We assume that g(θ, ε) is given as a computationally expen-

sive black box that is linearizable in C as a function of ε with fixed θ.
The latter assumption is usually justified if the uncertainties are reason-

ably small. Hence we assume C to be a suitably small set. Also, we assume
the uncertainties to be high-dimensional, with possibly up to thousands of
uncertain parameters.

We approach a solution of (3.2) in two steps, regarding the inner level and
the outer level of the problem separately. The inner level reads as follows

max
ε

g(θ, ε) (3.3)

s.t. ε ∈ C,
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for a fixed θ ∈ T. We will refer to (3.3) as the worst-case search.

The maximizer ε̂ for the fixed design choice θ corresponds to the worst-case
objective function value

ĝ(θ) := g(θ, ε̂)). (3.4)

The function θ → ĝ(θ) implicated by the solution of problem (3.3) is the
objective function of the outer level of problem (3.2)

min
θ

ĝ(θ) (3.5)

s.t. θ ∈ T.

The 1-level problem (3.5) can be solved with black box optimization tech-
niques towards a robust optimum, see, e.g., [9].

In the following section we will focus on a method to solve the inner level (3.3)
fast in high dimensions, so the evaluation of ĝ is computationally cheaper and
black box optimization tools for (3.5) can be employed more efficiently.

4 Worst-case search

Let f(ε) := g(θ, ε) for fixed θ be a computationally expensive black box as
mentioned in the last section. For a polyhedral cloud the worst-case search
then becomes

max
ε

f(ε) (4.1)

s.t. A(ε − m) ≤ b.

We denote the solution of (4.1) as ε̂, and f̂ := f(ε̂).

In a classical approach one can approximate f linearly in the box b0 that
contains the polyhedron C by a function flin(ε). Thus problem (4.1) becomes
a linear programming problem (LP),

max
ε

flin(ε) (4.2)

s.t. A(ε − m) ≤ b.
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However, the cost for the linearization of f is in the order of magnitude of
n evaluations of the black box f which may become prohibitively expensive
for large n.

In this section we present an approach inspired by the Cauchy deviates
method (CD) for interval uncertainty [14, 13, 12], i.e.,

[min
ε

f(ε), max
ε

f(ε)] (4.3)

s.t. ε ∈ b0.

One avoids linearization of f and instead uses a simulation based ’trick’
sampling a Cauchy distribution. We will modify this trick for the case of
polyhedral uncertainty as follows.

1. The first step is the same as in CD and simply a function evaluation at

the center m of the polyhedron, i.e., we compute f1 := f(m).

2. The second step in CD is generating a sample point ei ∈ [0, 1]n from a
uniform distribution. We do the same and add a rejection step here for
the case that ei is not in a normalized version of C. Hence, we reject and
resample ei if

Av > b, (4.4)

with v = (ei − 0.5).*(b0 − b0) in Matlab notation.

3. The third step is, as in CD, a transformation of ei to a Cauchy distri-
bution. The Cauchy distribution has the density

ρ∆,ℓ(x) =
1

π

∆

∆2 + (x − ℓ)2
, (4.5)

with the scale parameter ∆, and the location parameter ℓ. The corresponding
CDF of the Cauchy distribution is

FCauchy(∆, ℓ)(x) =
1

2
+

1

π
arctan

(
x − ℓ

∆

)
, (4.6)

and the inverse CDF reads

F−1
Cauchy(∆, ℓ)(x) = ℓ + ∆ tan

(
π

(
x −

1

2

))
. (4.7)
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Hence to transform ei to a Cauchy distributed sample scaled with respect to
b0 we compute

xj
i = F−1

Cauchy((b0
j
− b0

j)/2, 0)(ej
i ) =

b0
j
− b0

j

2
tan

(
π

(
ej

i −
1

2

))
, (4.8)

where xj
i indicates the jth coordinate of the vector xi, j = 1, . . . , n.

Thus we have simulated a sample point xi that lies possibly outside {C −
m} := {x ∈ R

n | x = y + m, y ∈ C}.

4. So similar to CD we need a normalization step not to violate the con-
straints in (4.1). To this end we compute the factor

K =

∥∥∥∥
Axi

b

∥∥∥∥
∞

, (4.9)

thus xi

K
lies in {C −m}, and lies on the margin of {C −m} in one coordinate.

5. Evaluate

f
(xi

K
+ m

)
=: fi (4.10)

and compute the simulated deviation

δi = K(fi − f1). (4.11)

6. Repeat the steps 2–5 for i = 2, . . . , N , where N is a user defined param-
eter determining the number of function evaluations of f used to solve (4.1).
Thus we achieve the sample δ2, . . . , δN .

7. In the 7th step we estimate the deviation ∆ = f̂ − f1 from f1 = f(m)
statistically thanks to the knowledge of δ2, . . . , δN . To this end we solve the
following zero finding problem for ∆ as in the classical CD

1

1 +
(

δ2
∆

)2
+ · · ·+

1

1 +
(

δN

∆

)2
−

N − 1

2
= 0. (4.12)

where a zero is known to lie in the interval ∆ ∈ [0, maxi |δi|].

Thus we find f1 + ∆ as our estimated solution f̂ of (4.1).
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4.1 Remark. Note that f1 + ∆ is only a simulation based estimation of f̂
and not a reproducible function evaluation, so the black box ĝ(θ) in the outer
level problem (3.5) becomes noisy which may lead to a suboptimal solution
which is, however, often close to the optimum in our test cases, cf. Section 5.
In general the methods to solve (3.5) may be sensitive to a noisy worst-case
function.

4.2 Remark. In [12] the quality of the estimation of f̂ is considered with
respect to the number of function evaluations N used, cf. Table 4.1. Also
the accuracy of the estimation for very small N is studied in [12], cf. Table
4.2. Based on this experience one can choose a reasonable value of N with
respect to a given application. In our applications we use N = 50 as a default
value. Note that if N > n it is not reasonable to use the simulation based
approach, and a linearization based approach (4.2) should be preferred.

Table 4.1: Number of function evaluations N needed for a given estimation
error with a given confidence.

error 95% confidence 99.9% confidence
10% 800 1800
20% 200 450
40% 50 110

Table 4.2: Estimation error for very small N .

N 20 10 5
error 70% 110% 400%

4.3 Remark. Step 7 requires that f is linear in C and that the components
of ε are independent random variables. Then f̂−f1 is a linear combination of
independent Cauchy distributed variables and thus also Cauchy distributed
with the unknown parameter ∆ which is determined via maximum likelihood
estimation (4.12). The assumption that the variables are independent is
violated if the polyhedral constraints arise from dependency information as
described in Section 2, so ∆ is actually not quite Cauchy distributed anymore.
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The numerical results in Section 5, however, show that this had little effect
on the quality of the estimation of f̂ in our test cases, in particular it did
not yield critical underestimation of worst-cases. In the future we need a
statistically more precise estimation of ∆.

4.4 Remark. Note that the minimizer of (4.1), i.e., the worst-case scenario,
remains unknown with the method presented.

4.5 Remark. It should be highlighted that the described method can be
easily parallelized via parallel function evaluations, and that N in Table 4.1
and Table 4.2 is independent of n, so the method is computationally very
efficient in high dimensions.

5 Application examples

In this section we apply the new worst-case search technique in two appli-
cations of cloud based robust design optimization in spacecraft system de-
sign: the NASAs Mars Exploration Rover (MER) mission [8, 2, 16], and the
2004 X-ray Evolving Universe Spectroscopy (XEUS) mission of the European
Space Agency (ESA) [18, 3, 3].

Without going too much into the details of the missions, the relevant char-
acteristics of the problems are as follows: in MER we have a 1-dimensional
design problem, i.e., n0 = 1, with a 34-dimensional uncertainty domain, i.e.,
n = 34. In XEUS we have a 10-dimensional design problem, i.e., n0 = 10,
with a 24-dimensional uncertainty domain, i.e., n = 24.

In the original applications there was no expert knowledge provided to gen-
erate polyhedral clouds that are not box shaped. Hence we have added
artificially arbitrary polyhedral constraints in both cases in order to create a
different situation from the classical interval uncertainty treated by CD.

The test cases are 24 and 34 dimensional, respectively, so actually not suf-
ficiently high-dimensional to reveal the benefits of the new method since
n < 50. But one can compare the results very good to the existing results
found by linearization of the black box f , and the strength of the method
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becomes obvious by the argument that the same quality of worst-case es-
timation will be achieved for much higher n without additional function
evaluations. Real-life applications in much higher dimensions are likely to be
investigated with the presented methods in the near future.

To compare the results with the existing results for the test cases, we perform
10 full runs of robust design optimization using the new worst-case search.
We regard each worst-case estimation during this process and count how often
the estimated worst-case is close to the worst-case found with the previous
approach based on linearization. Close here means

∣∣∣∣
worstcasenew − worstcaseold

worstcaseold − f1

∣∣∣∣ < 40%. (5.1)

The results are shown in Table 5.1. They confirm the estimation quality and
confidence indicated in Table 4.1, though the requirements of CD are not
perfectly met as mentioned in Remark 4.3.

Table 5.1: Number of simulation based worst-case estimations within close
range (40% error) of linearization based worst-case searches.

number of estimations close results percentage

MER 400 384 96.0%
XEUS 5340 5154 96.5%

Furthermore, we have a look at the effect of the new – a bit more noisy, cf.
Remark 4.1 – worst-case function on the optimal solution found. We count
how often the linearization based worst-case of the new optimum (found with
simulation) is close to the previously found optimal worst-case.

As we see in Table 5.2 we rarely find identical results. In XEUS we find no
suboptimal results that are very close to the actual optimum. In MER the
suboptimal results are often very close to the actual optimum. In both test
cases the suboptimal results are very often within the 40% error threshold
from the actual optimum, which could be expected from Remark 4.2, since
we chose N = 50. Especially in MER the average error is much smaller than
this threshold.
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Table 5.2: Number of simulation based solutions within close range of solu-
tions from linearization based robust optimization.

number of opti-

mizations

same results close results, 5% close results, 40% average error

MER 10 2 6 10 7.3%
XEUS 10 0 0 9 22%
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