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Summary. Over the last few years, much research has been dedicated to the cre-
ation of decisions support systems for space system engineers or even for completely
automated design methods capturing the reasoning of system experts. However, the
problem of taking into account the uncertainties of variables and models defining
an optimal and robust spacecraft design have not been tackled effectively yet. This
chapter proposes a novel, simple approach based on the clouds formalism to elicit
and process the uncertainty information provided by expert designers and to incor-
porate this information into the automated search for a robust, optimal design.

1.1 Introduction

The design of a spacecraft is a demanding challenge. The complexity of the
task and its multidisciplinarity make it difficult to obtain a complete survey
and a deep understanding of the whole design process.

In a classical approach to multidisciplinary design (cf. [Roy, 1996], [Belton
and Stewart, 2002]), each specialist would prepare a subsystem design rather
independently, using stand-alone tools. Design iterations among the different
discipline experts would take place in meetings at intervals of a few weeks. This
well-established approach reduces the opportunity of finding interdisciplinary
solutions and to create system awareness in the specialists. A considerable
step towards a multidisciplinary approach in the early phases of space sys-
tem design has been achieved by concurrent engineering where a sequential
iterative routine is replaced by a parallel and cooperative procedure. Design
facilities where these methodologies are implemented are, among others, the
ESA Concurrent Design Facility [Bandecchi et al., 1999], the NASA Goddard
Integrated Mission Design Center [Karpati et al., 2003] and the Concept De-
sign Center at the AeroSpace Corporation [Aguilar et al., 1998].

In these facilities it is common practice of preliminary spacecraft design
to handle uncertainties by assigning intervals, or safety margins, to the un-
certain variables, usually combined with an iterative process of refining the
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intervals while converging to a robust optimal design. The refinement of the
intervals is done by the system experts who assess whether the worst-case
scenario, which has been determined for the design at the current stage of
the iteration process, is too pessimistic or too optimistic. How to assign the
intervals and how to choose the endpoint of the assigned intervals to get the
worst-case scenario is usually not computed but assessed by a system ex-
pert. The goal of the whole iteration process includes both optimization of
the design and safeguarding against uncertainties. The available uncertainty
information in the early phase of a spacecraft design is often very limited,
mostly there are only interval bounds on the uncertain variables, sometimes
probability distributions for single variables without correlation information.
When the amount of available uncertainty information is small, traditional
methods face several problems. To make use of well known current meth-
ods from probability theory or fuzzy theory (e.g., fuzzy clustering) more such
information would be required. Simulation techniques like Monte Carlo also
require a larger amount of information to be reliable. The lack of information
typically causes these methods to underestimate the effects of the uncertain
tails of the probability distribution (cf. [Ferson, 1996]). Similarly, a reduction
of the problem to an interval analysis after assigning intervals to the uncer-
tain variables as described before (e.g., 3 σ boxes) entails a loss of valuable
uncertainty information which would actually be available but not involved
in the uncertainty model. Moreover, in higher dimensions the numerical com-
putation of the error probabilities is very expensive, if not impossible, even
given the knowledge of the multivariate probability distributions.

Many previous works deal with uncertainty modelling applied to space sys-
tems design. In [Pate-Cornell and Fischbeck, 1993] probability risk analysis is
applied to the uncertainties in space shuttle design; an approach from fuzzy
theory can be found e.g., in [Ross, 1995]; in [Thunnissen, 2005] a general qual-
itative and quantitative investigation of uncertainties in space design is given.
The work by [Amata et al., 2004] presents studies harmonizing the interests
from different disciplines in multidisciplinary design optimization; and a deci-
sion support tool for spacecraft design is implemented in [Zonca, 2004]. The
attempt to incorporate both uncertainty and autonomy in the design process
was made e.g., in [McCormick and Olds, 2002] using Monte-Carlo simulation
techniques, or with a fuzzy logic approach in [Lavagna and Finzi, 2002]. The
ESA Advanced Concepts Team in cooperation with the University of Vienna
performed an Ariadna study on the application of the clouds theory in space
design optimization [Neumaier et al., 2007]. This study presented an initial
step on how clouds could be applied to handle uncertainties in spacecraft
design. This chapter goes a step further in this direction.

Generally speaking, the task of robust and automated space system design
cannot be regarded as a single task, but consists of two tasks that have to be
accomplished concurrently. First, the design should be robust; in other words:
the design should be safeguarded against uncertain perturbations. Second, the
design should be found automatically; this indicates the existence of a method
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which is able to find the optimal design choice automatically. The optimality
of a spacecraft design can depend on multiple objectives, such as the cost or
the mass of the spacecraft or both at the same time. Continuing the work from
[Neumaier et al., 2007] to accomplish the two tasks, this chapter presents a
newly developed methodology to gather all available uncertainty information
from system experts, process it to a reliable worst-case analysis and finally
optimize the design seeking the optimal robust design.

The presented approach handles and processes information gathered by the
clouds formalism introduced in [Neumaier, 2004a]. Clouds allow the represen-
tation of incomplete stochastic information in a clearly understandable and
computationally attractive way, mediating between aspects of fuzzy set the-
ory and probability distributions (cf. [Dubois and Prade, 2005]). The use of
clouds permits an adaptive worst-case analysis without losing track of impor-
tant probabilistic information. At the same time, all computed probabilities,
and hence the resulting designs, are reasonably safeguarded against pertur-
bations due to unmodelled and possibly unavailable information. For given
confidence levels, the clouds provide regions of relevant scenarios affecting the
worst-case for a given design. This work has the ambitious goal to achieve a
quantification of reliability close to classical probability theory methods, but
in higher dimensional spaces of uncertain scenarios so that one can deal with
real-life system design.

To find a robust optimal design automatically, heuristic optimization
methods were developed that take advantage of inherent characteristics of
spacecraft design problems. This allows to investigate applications to concrete
spacecraft design problems.

Figure 1.1 illustrates the basic concept of the approach. The expert pro-
vides the underlying system model, given as a black-box model, and all cur-
rently available uncertainty information on the input variables of the model.
The information is processed to generate a cloud that provides a nested col-
lection of regions of relevant scenarios parameterized by a confidence level
α, thus produces safety constraints for the optimization. The optimization
minimizes a certain objective function (e.g., cost, mass) subject to the safety
constraints to account for the robustness of the design, and subject to the
functional constraints which are represented by the system model. The re-
sults of the optimization, i.e., the automatically found optimal design point
and the worst-case analysis, are returned to the expert, who is given an in-
teractive possibility to provide additional uncertainty information afterwards
and rerun the procedure.

The uncertainty information can be provided on the one hand as bounds
or marginal probability distributions on the uncertain variables. On the other
hand, the engineers can adaptively improve the uncertainty model, even if
their expert knowledge is only little formalized, by adding correlation con-
straints to exclude scenarios deemed irrelevant. The information can also be
provided as real sample data, if available.
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Fig. 1.1. Basic concept.

This chapter is organized as follows. Section 1.2 and Section 1.3 present a
more detailed investigation of the uncertainty modelling and the design opti-
mization methods. These techniques are applied to an example from spacecraft
system design described in Section 1.4. Section 1.5 discusses general and de-
tailed aspects, remarks, problems and advantages of the approach. Section 1.6
concludes the chapter with a summary of findings and an outlook on possible
future work.

1.2 Uncertainty Modelling

The concept of clouds was introduced in [Neumaier, 2004a] as a new notion
for handling uncertainty. Clouds describe the rough shapes of typical samples
of various size, without fixing the details of the distribution. The special case
of interest for large-scale models is a potential-based cloud. This section deals
with these potential clouds, with their properties, computation, and their illus-
tration through examples. Initially, the section gives a theoretical introduction
to potential clouds, i.e., how they are defined, their probabilistic properties,
and how they can be interpreted intuitively. The section then describes how
they can be generated computationally, if the uncertainty information is given
by marginal distributions or boxes for uncertain variables, and how they will
constrain the optimization problem.
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1.2.1 Potential Based Clouds

A potential based cloud is defined by a continuous potential V which assigns
to each scenario ε from a set M ⊆ R

n a value V (ε) ∈ R
+ defining the shape

of the cloud (see e.g., Figure 1.2), and a lower probability α(U) and an upper
probability α(U) defining the boundary of the cloud, such that, for all U ∈ R

+:

α(U) ≤ Pr(V (ε) < U) ≤ Pr(V (ε) ≤ U) ≤ α(U), (1.1)

where ε ∈ M a random variable, α and α strictly increasing continuous func-
tions of U mapping the range of V to [0, 1].

The mapping x→ [α(V (x)), α(V (x))], x ∈ M, is the potential based cloud.
The functions α and α can be interpreted as boundings on the distribution of
V (ε).

For a given failure probability perr and α := 1 − perr, the so-called α-
cut describes an inner region Cα (lower α-cut) of α-relevant scenarios and a
(generally larger) region Cα (upper α-cut) of α-reasonable scenarios. Define
Cα := {ε ∈ M | V (ε) ≤ Uα} if Uα := min{Uα ∈ V (M) | α(Uα) = α}
exists, and Cα := ∅ otherwise; analogously Cα := {ε ∈ M | V (ε) ≤ Uα}
if Uα := max{Uα ∈ V (M) | α(Uα) = α} exists, and Cα := M otherwise.
The conditions defining the cloud (i.e., α ≤ α, α and α strictly increasing
and monotone) guarantee, that Uα ≤ Uα, and that there is a region Cα with
Cα ⊆ Cα ⊆ Cα containing a fraction of α of all scenarios considered possible.
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Fig. 1.2. α-cuts of a 2-dimensional potential based cloud.
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1.2.2 Cloud Generation and Constraints

This text now describes a method to generate computationally a cloud that
matches the above definition, assuming the uncertainty information is given by
marginal distributions or boxes for the vector of uncertain variables. At first, a
sample S of N sample points is generated. The sample points are chosen from
a grid fulfilling the well-known Latin hypercube condition (see e.g., [McKay
et al., 1979]). If only boxes are given, then the grid is equidistant, if marginal
distributions are given the grid is transformed with respect to them to ensure
that each grid interval has the same marginal probability. Thus the generated
sample represents the marginal distributions. However, after a modification of
S, e.g., by cutting off sample points as is done later, an assignment of weights
to the sample is necessary to preserve the marginal distributions.

The weights are computed by satisfying the following conditions. Let S =
{x1, ..., xN} be a set of N sample points in R

n. Let xk
i , i = 1, ..., N be the

projection of xi to the kth coordinate, πk a sorting permutation of {1, ..., N},
such that xk

πk(1) ≤ xk
πk(2) ≤ ... ≤ xk

πk(N). Let I be the index set of those
entries of the uncertainty vector ε where a marginal probability distribution
Fk, k ∈ I is given. For all k ∈ I and i = 1, ..., N the weights ω1, ..., ωN have
to be nonnegative and satisfy the following constraints:

i
∑

j=1

ωπk(j) ∈ [Fk(xk
πk(i)) − d, Fk(xk

πk(i)) + d],

N
∑

i=1

ωi = 1. (1.2)

The constraints (Eq. 1.2) require the weights to represent the marginal distri-
butions with some reasonable margin d. In other words, the weighted empir-
ical distribution of the sample projected to a margin should not differ from
the given marginal probability distribution by more than d. In practice, one
chooses d with Kolmogorov-Smirnov statistics.

Initially, one chooses the potential function V to be boxed shaped, i.e.,

V (ε) := maxk
|εk−µk|

rk , where ε, µ, r ∈ R
n, εk, µk, rk are the kth components

of the vectors, µ the mode, r the radius of the sample S. With the computed
weights one achieves an empirical distribution for {V (ε), ε ∈ S} approxi-
mating the distribution function of V (ε). Smooth lower bounds α(V (ε)) and
upper bounds α(V (ε)) are fitted for the empirical distribution (with a piece-
wise cubic Hermite spline, cf. Figure 1.3) considering the size of the sample
and the quality of the approximation of the distribution function of V (ε), i.e.,
a violation of the constraints (Eq. 1.2). The shorter the sample, or the lower
the acceptable incidence of violations, the larger the width of the bounds is
chosen. Having found an appropriate bounding of the distribution function
of V (ε) a potential cloud was generated which fulfills the conditions that de-
fine the cloud according to the remarks to Theorem 4.3 in [Neumaier, 2004a].
Thus it represents the given uncertainty information.

As already mentioned, initially a box shaped potential has been chosen,
but the expert will have the option to cut off scenarios that are not considered
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Fig. 1.3. The smooth lower bounds α(V (ε)) and upper bounds α(V (ε)) enclos-
ing the empirical distribution of V (ε). The mapping ε → [α(V (ε)), α(V (ε))] is a
potential cloud (cf. Section 1.2.1).

relevant and thus specify the uncertainty information in the form of correlation
bounds adaptively resulting in a polyhedron shaped potential. This iterative
step imitates the procedure of decision making of real life applications and is
particularly important if there is only little uncertainty information available.

As soon as the cloud representing the uncertainty information is generated,
one can produce the worst-case relevant region C for a given potential. For a
given confidence level α one numerically computes the solution Vα of α(Vα) =
α, cf. Section 1.2.1, and defines the region C := {ε | V (ε) ≤ Vα} if a solution
Vα exists and C := ∅ otherwise, which is only the case for very low confidence
levels. The next section shows that the region C can be used to constrain the
design optimization problem.

1.3 Design Optimization

The focus of this section is on design optimization. The section starts with a
general optimization problem formulation, points out the characteristics and
difficulties that come with it, and finally give a short introduction to the
heuristic approach that was developed to solve the problem.

It is assumed that the optimization problem can be formulated as a mixed-
integer, bi-level problem of the following form:



8 Martin Fuchs, Daniela Girimonte, Dario Izzo, and Arnold Neumaier

min
θ

max
x,z,ε

f(x) (objective functions)

s.t. z = Z(θ) + ε (table constraints)

F (x, z) = 0 (functional constraints) (1.3)

V (ε) ≤ Vα (cloud constraint)

θ ∈ T (selection constraints)

Here ε is the vector of uncertainties, θ is the vector of choice variables (with
one variable for each independent table of choices), z is the vector consisting
of all global input variables and all design variables and x is the vector con-
sisting of all output variables of the underlying model. The table constraints
assign to each choice θ a design vector z whose value is the nominal table
entry Z(θ) plus its (unknown) error ε with uncertainty specified by the cloud.
The functional constraints express the functional relationships defined in the
underlying system model which usually comes as a black-box as mentioned in
Section 1.1. It is assumed that the number of equations and the number of
output variables is the same (i.e., dimF = dimx), and that the equations are
(at least locally) uniquely solvable for x. This holds in the particular case that
the black-box is given in the form F (x, z) = F (z) − x with some black-box
function F and dimF = dimx. The cloud constraint involves the potential
function V as described in the last section. Because of the polyhedral struc-
ture of our clouds, the cloud constraint can be written as a collection of linear
inequalities parameterized by the confidence level, a feature important for
the implementation. The selection constraints specify how many choices are
allowed for each choice variable.

This optimization problem (Eq. 1.3) features difficulties of the most com-
plex nature: it is a mixed integer nonlinear program (MINLP) with a bi-level
structure which cannot be handled directly with standard optimization tools.
Therefore the problem is approached with heuristic methods that were devel-
oped to exploit the characteristics of the above design optimization problem.

1.3.1 Heuristics

The inner level of the problem (Eq. 1.3), i.e., finding the worst-case scenario
for f over the polyhedron C for a fixed design choice θ, is solved using linear
programming. To this end f is linearly approximated within a box b that
contains C.

To tackle the outer level of problem (Eq. 1.3), i.e., to find the design
choice θ with the minimal worst-case objective function value, two different
methods are used; one based on a quadratic model, the other on separable
underestimation.

In the first method, one fits a quadratic model of the objective function and
minimizes this model to get a guess for the optimal solution of the problem.
In this approach the discrete nature of the choice variables is ignored.
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The second method, on the other hand, takes advantage of the discrete
nature of θ and finds a separable underestimator q(θ) for the objective of the
form:

q(θ) :=

n0
∑

i=1

qi(θ
i), (1.4)

where n0 is the dimension of the choice variable, and θi the ith coordinate of θ.
Let N0 be the number of function evaluations f1, ..., fN0

that have been made
in advance for the design choices θ1, ..., θN0

. The expression qi(θ
i
l) is simply

a constant qi,θi

l

for integer choice variables θi
l , and qi(θ

i
l) = qi1 · θi

l + qi2 · θi
l

2
,

with constants qi1, qi2, for continuous choice variables θi
l . The constants qi are

treated as variables qi in a linear optimization program (LP) satisfying the
constraints

n0
∑

i=1

qi(θ
i
l) ≤ fl l = 1, ..., N0, (1.5)

and are computed by an LP solver. This ensures that many constraints in
(Eq. 1.5) will be active. The underestimator q(θ) can then be easily minimized
afterwards.

Finally the minimizers that result from these methods are used as start-
ing points for a limited global search that consists of an integer line search
for the discrete choice variables and multilevel coordinate search [Huyer and
Neumaier, 1999] for the continuous choice variables. Thus, the hope is to find
the global optimal solution, but as heuristics are used there is no guarantee.

1.4 Case Study

This section applies the proposed robust and automated design method to
a case study of spacecraft engineering, i.e., the Attitude Determination and
Control Subystem (ADCS) for the NASA’s Mars Exploration Rover (MER)
mission cf. [MER, 2003], [Erickson, 2004] whose scientific goal is to investi-
gate the history of water on Mars. The spacecraft has no main propulsion
subsystem onboard and the ADCS is composed by eight thrusters aligned in
two clusters. The mission sequence after orbit injection includes a number of
spin maneuvers and slew maneuvers as reported in Table 1.3. Spin maneuvers
are required for keeping the gyroscopic stability of the spacecraft, whereas
slew maneuvers serve to control the direction of the spacecraft and to fight
the effects of solar torque. Fault protection is considered to correct possible
errors made when performing nominal maneuvers.

The goal is to select the type of thrusters (from a set of possible candidates
as listed in Table 1.4) considering the design objective of minimizing the total
mass mtot, and the worst possible performance of a thruster with respect to
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mtot, i.e., to find the thruster with the minimal mass worst-case scenario. The
total mass consists of the fuel needed for attitude control (computed as the
sum of the fuel needed for each maneuver) plus the mass of the eight thrusters
that need to be mounted on the spacecraft. The variable structure and the
model equations to compute the fuel mass for attitude control can be found
in Appendices A and B, respectively. According to the notation introduced in
(Eq. 1.3), the choice variable θ, i.e., the type of thruster, can be selected as
an integer between 1 and 30.

The uncertainty specification for the model variables are taken from
[Thunnissen, 2005] and reported in Table 1.5 of Appendix E. The number
of uncertain variables in this application example is 33 plus 1 uncertain de-
sign variable.

1.4.1 Results

The cloud constraints for the optimization are generated for a confidence
level of α = 95% and a generated sample size of N = 1000. For the computa-
tion of the results the presented methods have been implemented as Matlab

code. The study makes use of the Statistics Toolbox of Matlab to evaluate
probability distributions. The study also uses CVX [Grant and Boyd, 2007]
to solve linear programs, Snobfit [Huyer and Neumaier, 2006] and MCS
[Huyer and Neumaier, 1999] as external optimization routines, and NLEQ
[Deuflhard, 2004], [Nowak and Weimann, 1990] to solve systems of nonlinear
equations. The results for optimization are divided into four different config-
urations of uncertainty handling and specifications:

a. The uncertainties are as specified in Table 1.5. Here they are treated in
a classical engineering way, assigning 3 σ boxes to the uncertain variables
which corresponds to a 99.7% confidence interval for a single normally dis-
tributed variable. Then the optimal design choice is θ = 9 with an objective
function value of mtot = 3.24 kg in the nominal case and mtot = 5.56 kg
in the worst case.

b. The uncertainties are again as in Table 1.5. Here we use the methods pre-
sented in the last sections and find Vα = 0.9922 and the optimal design
choice θ = 9, as in Configuration a. However, when comparing the worst-
case analysis of b and a, it is apparent that the results for the 3 σ boxes
are far too optimistic to represent a reliable worst-case scenario, the value
of mtot is now 8.08 kg instead of 5.56 kg for the 3 σ boxes.

c. This configuration does not take any uncertainties into account, generally
assuming the nominal case for all uncertain input variables. The optimal
design choice then is θ = 3 with a value of mtot = 2.68 kg in the nominal,
but mtot = 8.75 kg in the worst case, which is significantly worse than in
Configuration b.

d. The uncertainties are obtained by taking the values from Table 1.5 and
doubling the standard deviation of the normally distributed variables. It
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is interesting to report that if one increases the uncertainty in the nor-
mally distributed uncertain variables simply in this way, the optimal de-
sign choice changes to θ = 17 with a value of mtot = 3.38 kg in the nominal
and mtot = 9.49 kg in the worst case.

The results are summarized in Table 1.1, showing the optimal design choice
for each configuration and the corresponding value of the objective function
mtot for the nominal case and for the worst case, respectively. Configuration b
is our reference configuration as in this case we apply our new methods given
the original uncertainty information from Table 1.5.

Table 1.1. Nominal and worst-case values of mtot for different design choices ob-
tained by the four different configurations.

Configuration Design Choice θ Nominal value mtot Worst-case mtot

a 9 3.24 5.56
b 9 3.24 8.08
c 3 2.68 8.75
d 17 3.38 9.49

The results reported above show a number of important facts related to
spacecraft design. The comparison between the configurations b and d sug-
gests that in a preliminary stage of the spacecraft systems modelling the
optimal design point is quite sensitive to the uncertainty description, a fact
well-known to the system engineers who see their spacecraft design changing
frequently during preliminary phases when new information becomes continu-
ously available. The presented method captures this important dynamics and
describes it in rigorous mathematical terms.

The comparison between the configurations b and c suggests that the un-
certainties need to be accounted for at an early stage in order not to critically
overestimate the spacecraft performances.

Finally, the comparison between configurations b and a suggests that the
simple 3 σ analysis of uncertainties, very frequent in real practice, produces
a quite different estimation of the spacecraft performances with respect to a
more rigorous accounting of the uncertainty information.

We see that Configuration b is the best approach to the goal presented
in this paper, i.e., minimizing the design worst-case while reasonably taking
account of uncertainties.
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1.5 Discussion

The importance of a robust design has been the starting point and main moti-
vation of this research work and the results obtained from a case study confirm
that the optimal spacecraft design is strongly sensitive to uncertainties. At the
present stage, it can be confirmed that neglecting uncertainties results in a de-
sign that completely lacks robustness and a simplified uncertainty model (like
a 3 σ approach) may yield critical underestimations of worst-case scenarios.

When trying to collect the uncertainty information, it turned out to be very
difficult to get useful, formalized information directly from expert engineers.
To collect all information, both formalized and unformalized, an interactive
dialogue between expert and computer can be realized by a graphical user
interface where the engineers can specify uncertainties, provide sample data,
cut off worst-case irrelevant scenarios, and adjust the quality of the uncertainty
model. It is expected that this kind of interaction is an inevitable next step
in space design.

Now, the discussion continues with more detailed considerations on the
study.

• In the theory of clouds (cf. Section 1.2.1) there is a distinction between
regions of α-relevant, α-reasonable scenarios and borderline cases (which
is the set difference of the α-reasonable and the α-relevant regions). In ro-
bust design the possibly uncertain scenarios are required to satisfy safety
constraints. With respect to the presented terminology the regions above
have the following interpretation: if at least one of the α-relevant sce-
narios fails to satisfy the safety constraints, the design is unsafe; if all
of the α-reasonable scenarios satisfy the safety constraints, the design is
safe. Between these two cases there is the borderline region where no pre-
cise statement can be made without additional uncertainty information.
The width of the borderline region is increasing if the width of the cloud
increases and vice versa. So widening the cloud enlarges the borderline
region, corresponding to a lack of uncertainty information. This fact is
reflected in our approach as both a smaller sample size and an increased
dimension of the uncertainty result in a wider cloud.

• The width of the cloud is defined as the difference between the mappings
α and α (cf. Section 1.2.1). The mappings were constructed to fulfill the
conditions that define a cloud with an algorithm which is non-rigorous,
but can grant a high, adjustable reliability of the fulfillment of the condi-
tions. Thus the user of the algorithm is able to control the desired level of
reliability.

• The choice of the potential function is arbitrary. Different shapes of the
cloud (i.e., shapes of the potential) can make the worst-case analysis more
pessimistic or optimistic. It is necessary to emphasize that a poor choice
of the potential makes the worst-case analysis more pessimistic, but will
still result in a valid robust design. This study allows a variation of the
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potential by switching from a box-shaped to a polyhedron-shaped poten-
tial to enable the experts to improve the uncertainty model iteratively.

• A good weight computation (cf. Section 1.2.2) is the key to a good uncer-
tainty representation with clouds. In higher dimensions the weight com-
putation is very expensive. To overcome this problem and to allow the
adjustment of the computation time, the relaxation radius d (cf. Section
1.2.2) must be increased carefully. The presented algorithm respects the
relaxation property, widening the cloud by the amount of relaxation after
evaluating the quality of the weights.

• As mentioned before, this work is limited to the use of heuristic methods
since the design problem (Eq. 1.3) is highly complex and not suitable for
standard optimization methods. The problem formulation here therefore
asks to find the design with the optimal worst-case scenario. It is possible to
trade off between the worst-case scenario and the nominal case of a design,
but this would lead to a multi-objective optimization problem formulation.

• The number 34 of uncertain variables in the presented application exam-
ple is large enough to make our problem representative for uncertainty
handling in real-life applications.

• Though global optimality for the solution in the presented case study is
very likely, as the choice variable is 1-dimensional and discrete, the heuris-
tical methods cannot guarantee global optimality of the problem solution
in general.

• The method of separable underestimation introduced in this chapter takes
advantage of the discrete nature of many of the variables involved in space-
craft design, supporting, at the same time, continuous choice variables.
Details about the heuristic approach for design optimization introduced in
Section 1.3 will be published elsewhere.

1.6 Conclusions and Future Work

This chapter presented a new approach to robust and automated space sys-
tem design. Starting from the background of the cloud theory the chapter
developed methodologies to process the uncertainty information from expert
knowledge towards a reliable worst-case analysis and an optimal and robust
design. The presented approach is applicable to real-life problems of early
phase spacecraft system design. At present, in most instances of the space-
craft design, reliability is only assessed qualitatively by the experts. This work
presents a step forward towards quantitative statements about the design re-
liability.

The adaptive nature is one of the key features of the presented uncertainty
model as it imitates real-life design strategies. The iteration steps significantly
improve the uncertainty information and it is possible to process the new
information to an improved uncertainty model afterwards.
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The presented approach is generally applicable to problems of robust de-
sign optimization, especially with discrete design choices. The advantage of
achieving the optimal design automatically is undeniable. Although the new
methods have already been applied to space system design problems (cf. [Neu-
maier et al., 2007]), one future goal is to apply them to more problem classes
in order to learn from new challenges. Another aspect of future improvements
of the uncertainty model with clouds is the investigation of different shapes
of the potential function.

The presented approach makes it possible to process the available un-
certainty information to perform a reliable worst-case analysis linked to an
adjustable confidence level. An additional value of the uncertainty model is
the fact that one can capture various forms of uncertainty information, even
those less formalized. There is no loss of valuable information, and the meth-
ods are capable of handling the uncertainties reliably, even if the amount of
information is very limited.

In summary, the presented methods offer an exciting new approach to
face the highly complex problem of robust and automated system design, an
approach which is easily understandable, reliable and computationally realiz-
able.

Appendix

A Model Variable Structure

The 49 variables involved in the model fall into the following four categories:

• 7 fixed parameters.
Input variables for the model with fixed values and no uncertainty (for the
values see Table 1.2).

1. c0, speed of light in a vacuum
2. d, average distance from the spacecraft to the sun in AU
3. g0, gravity constant
4. t, total mission time
5. θi, sunlight angle of incidence
6. χ, the specific impulse efficiency parameter is a property of a particular

thruster. Lacking the specification of χ for several thrusters we fixed χ
to take the same values for all thrusters.

7. c1, the numerical solution x of tan(x) − x/(1 − χ) = 0

• 33 Uncertain input variables.
The uncertainties are specified by probability distributions for each of these
variables (cf. Appendix E).

1. Amax, maximal cross-sectional area
2. Jxx, Jzz , moments of inertia
3. R, engine moment arm
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Table 1.2. Values of the fixed parameters.

Fixed parameter Value

c0 3 · 108 m/s
d 1.26 AU
g0 9.81 m/s2

t 216 days
θi 0◦

χ 0.0375
c1 0.334

4. δ1, δ2, engine misalignment angle
5. gs, solar constant at 1 AU
6. κ, distance from the center of pressure to the center of mass
7. ωspini

, spin rates, i = 0...3, given in rpm
8. ψslewi

, slew angles, i = 1...19, given in ◦

9. q, spacecraft surface reflectivity
10. uncfuel, additive uncertain constant that represents inaccuracies in

the equations used for the calculation of the fuel masses

• 3 Design variables.
Thruster specifications relevant for the model. There is uncertainty infor-
mation given on one of them (the thrust).

1. F , thrust
2. Isp, specific impulse
3. mthrust, mass of a thruster

• 6 Output variables.
Result variables containing the objective for the optimization mtot.

1. mfp, fuel mass needed for fault protection maneuvers
2. mfuel, total fuel mass needed for all maneuvers
3. mslew , fuel mass needed for slew maneuvers
4. mslews

, fuel mass needed for slew maneuvers fighting solar torque
5. mspin, fuel mass needed for spin maneuvers
6. mtot, total mass of the subsystem

B Model Equations

The background for the equations of the ADCS subsystem model are the equa-
tions from Chapter 9 of [Thunnissen, 2005].The basic equations are as follows:

c = Isp · g0 (1.6)

r = sin(40◦) · R (1.7)

Fidealtot
= 2 · F (1.8)

Facttot
= (cos(δ1) + cos(δ2)) · F (1.9)
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To calculate the fuel mass mspin needed for one spin maneuver (change in
spin rate from ωspini

to ωspini+1
, i = 0...2) the following equations are given:

∆ωideal = |ωspini
− ωspini+1

| (1.10)

Iideal =
∆ωideal · Jzz

r
(1.11)

tspin =
Iideal

Fidealtot

(1.12)

Iactual = tspin · Facttot
(1.13)

mspin =
Iactual

c
(1.14)

To calculate the fuel mass mslew needed for one slew maneuver the following
equations are given (requires the slew angle ψslew for the maneuver and the
current spin rate ωspin at the time the maneuver is performed):

thalf rev =
π

ωspin

(1.15)

tonideal
=

2 · c1
ωspin

(1.16)

∆φideal = tonideal
· ωspin (1.17)

∆τ =
2 · Fidealtot

· r

∆φideal · sin
(

∆φideal

2

) (1.18)

H = Jzz · ωspin (1.19)

∆ψideal =
∆τ · tonideal

H
(1.20)

npulsesideal
=

⌈

ψslew

∆ψideal

⌉

(1.21)

∆ψ =
ψslew

npulsesideal

(1.22)

∆Itorque = H ·∆ψ (1.23)

∆φ = 2 · arcsin

(

∆Itorque · ωspin

2 · Fidealtot
· r

)

(1.24)

ton =
∆φ

ωspin

(1.25)

η =
ton

thalf rev

(1.26)

csd = c · ηχ (1.27)

mslew = npulsesideal
·
Facttot

· ton

csd

(1.28)

To calculate the total fuel massmfuel needed for all maneuvers we compute
for each maneuver to be performed the mass mspin or mslew (depends on the
maneuver type), and achieve mfuel as the sum of these masses. To calculate
the total mass mtot we compute

mtot = mfuel · (1 + uncfuel) + 8 ·mthrust (1.29)

C MER Mission Sequence

The sequence of maneuvers for the MER mission is listed in Table 1.3.
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Table 1.3. Mission sequence (cf. [Thunnissen, 2005]).

Mission sequence event Maneuver type parameter value unit

De-spin from 3rd stg. spin ωspin1 2.000 rpm
A-practice slew ψslew1 5.000 ◦

ACS-B1 slew ψslew2 50.45 ◦

ACS-B2 slew ψslew3 5.130 ◦

ACS-B3 slew ψslew4 6.350 ◦

ACS-B4 slew ψslew5 2.760 ◦

ACS-B5 slew ψslew6 8.510 ◦

ACS-B6 slew ψslew7 9.880 ◦

ACS-B7 slew ψslew8 5.640 ◦

ACS-B8 slew ψslew9 5.040 ◦

ACS-B9 slew ψslew10 5.750 ◦

ACS-B10 slew ψslew11 4.470 ◦

ACS-B11 slew ψslew12 5.530 ◦

ACS-B12 slew ψslew13 5.850 ◦

FP: spin event spin ωspin2 2.750 rpm
FP: spin recovery spin ωspin3 7.410 rpm
FP: emergency slew 1 slew ψslew14 15.75 ◦

FP: emergency slew 2 slew ψslew15 15.75 ◦

FP: emergency slew 3 slew ψslew16 15.75 ◦

FP: emergency slew 4 slew ψslew17 15.75 ◦

FP: emergency slew 5 slew ψslew18 15.75 ◦

FP: emergency slew 6 slew ψslew19 15.75 ◦

D Thruster Specification

Table 1.4 shows the thruster specifications and the linked choice variable
θ. The table entries are sorted by the thrust F . The difference between
the so-called design and choice variables can be seen easily in this ta-
ble: the table represents 30 discrete choices in R

3. The 3 design variables
are the 3 components of these points in R

3. The choice variable θ is 1-
dimensional and has an integer value between 1 and 30. The various sources
for the data contained in Table 1.4 are [EADS, 2007], [Thunnissen, 2005],
[Purdue School of Aeronautics and Astronautics, 1998], [Zonca, 2004], [Per-
sonal communication with ESA engineers, 2007].

E Uncertainty Specification

All uncertainty specifications taken from [Thunnissen, 2005] are reported in
Table 1.5. The notation used for the distributions is:

• U(a, b): uniform distribution in (a, b),
• N(µ, σ): normal distribution with mean µ and variance σ2,
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Table 1.4. Thruster specifications and the linked choice variable θ: Thrust F in
Newtons, specific impulse Isp in seconds, mass mthrust in grams.

θ Thruster F Isp mthrust

1 Aerojet MR-111C 0.27 210.0 200
2 EADS CHT 0.5 0.50 227.3 200
3 MBB Erno CHT 0.5 0.75 227.0 190
4 TRW MRE 0.1 0.80 216.0 500
5 Kaiser-Marquardt KMHS Model 10 1.0 226.0 330
6 EADS CHT 1 1.1 223.0 290
7 MBB Erno CHT 2.0 2.0 227.0 200
8 EADS CHT 2 2.0 227.0 200
9 EADS S4 4.0 284.9 290

10 Kaiser-Marquardt KMHS Model 17 4.5 230.0 380
11 MBB Erno CHT 5.0 6.0 228.0 220
12 EADS CHT 5 6.0 228.0 220
13 Kaiser-Marquardt R-53 10 295.0 410
14 MBB Erno CHT 10.0 10 230.0 240
15 EADS CHT 10 10 230.0 240
16 EADS S10 - 01 10 286.0 350
17 EADS S10 - 02 10 291.5 310
18 Aerojet MR-106E 12 220.9 476
19 SnM 15N 15 234.0 335
20 TRW MRE 4 18 217.0 500
21 Kaiser-Marquardt R-6D 22 295.0 450
22 Kaiser-Marquardt KMHS Model 16 22 235.0 520
23 EADS S22 - 02 22 290.0 650
24 ARC MONARC-22 22 235.0 476
25 ARC Leros 20 22 293.0 567
26 ARC Leros 20H 22 300.0 408
27 ARC Leros 20R 22 307.0 567
28 MBB Erno CHT 20.0 24 234.0 360
29 EADS CHT 20 25 230.0 395
30 Daimler-Benz CHT 400 400 228.6 325

• L(µ, σ): lognormal distribution, distribution parameters µ and σ (mean
and standard deviation of the associated normal distribution),

• Γ (α, β): gamma distribution with mean αβ and variance αβ2.

The uncertainty information on the design variable F should be interpreted
as follows: The actual thrust of a thruster is normally distributed, has the
mean Ftable (:= the nominal value for F specified in Table 1.4) and standard
deviation 7

300Ftable.
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Table 1.5. ADCS uncertainty specifications.

Variable Probability Distribution Variable Probability Distribution

Amax N(5.31, 0.053) ψslew6 N(8.51, 0.4)
Jxx U(300, 450) ψslew7 N(9.88, 0.5)
Jzz U(450, 600) ψslew8 N(5.64, 0.2)
R N(1.3, 0.0013) ψslew9 N(5.04, 0.2)
δ1 N(0, 0.5) ψslew10 N(5.75, 0.2)
δ2 N(0, 0.5) ψslew11 N(4.47, 0.1)
gs N(1400, 14) ψslew12 N(5.53, 0.1)
κ U(0.6, 0.7) ψslew13 N(5.85, 0.1)
ωspin0 N(12, 1.33) ψslew14 Γ (1.5, 10.5)
ωspin1 N(2, 0.0667) ψslew15 Γ (1.5, 10.5)
ωspin2 Γ (11, 0.25) ψslew16 Γ (1.5, 10.5)
ωspin3 L(2, 0.0667) ψslew17 Γ (1.5, 10.5)
ψslew1 N(5, 0.5) ψslew18 Γ (1.5, 10.5)
ψslew2 N(50.45, 5) ψslew19 Γ (1.5, 10.5)
ψslew3 N(5.13, 0.5) q N(0.6, 0.06)
ψslew4 N(6.35, 0.6) uncfuel N(0, 0.05)
ψslew5 N(2.76, 0.2) F N(Ftable, 7/300Ftable)
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